Functional linear regression after spline transformation
نویسندگان
چکیده
Functional linear regression has been widely used to model the relationship between a scalar response and functional predictors. If the original data do not satisfy the linear assumption, an intuitive solution is to perform some transformation such that transformed data will be linearly related. The problem of finding such transformations has been rather neglected in the development of functional data analysis tools. In this paper, we consider transformation on the response variable in functional linear regression and propose a nonparametric transformation model in which we use spline functions to construct the transformation function. The functional regression coefficients are then estimated by an innovative procedure called mixed data canonical correlation analysis (MDCCA). MDCCA is analogous to the canonical correlation analysis between two multivariate samples, but is between a multivariate sample and a set of functional data. Here, we apply the MDCCA to the projection of the transformation function on the B-spline space and the functional predictors. We then show that our estimates agree with the regularized functional least squares estimate for the transformation model subject to a scale multiplication. The dimension of the space of spline transformations can be determined by a model selection principle. Typically, a very small number of B-spline knots is needed. Real and simulation data examples are further presented to demonstrate the value of this approach. © 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Spline Estimator for the Functional Linear Regression with Functional Response
The article is devoted to a regression setting where both, the response and the predictor, are random functions defined on some compact sets of R. We consider functional linear (auto)regression and we face the estimation of a bivariate functional parameter. Conditions for existence and uniqueness of the parameter are given and an estimator based on a B-splines expansion is proposed using the pe...
متن کاملChoice of transformation for modelling non-linear continuous biomarkers
Identification of prognostic and predictive biomarkers is important for targeting treatments to patients and for the design and analysis of randomised controlled trials. Cox proportional hazards modelling is a standard method for assessing prognostic value of clinical biomarkers where time to occurrence of an event is the primary outcome of interest. An important issue in the analysis of progno...
متن کاملThin plate regression splines
I discuss the production of low rank smoothers for d ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thinplate spline smoothing problem, and are optimal in the sense that the truncation is designed to result in the minimum possible pe...
متن کاملSpline Estimators for the Functional Linear Model
We consider a regression setting where the response is a scalar and the predictor is a random function defined on a compact set of R. Many fields of applications are concerned with this kind of data, for instance chemometrics when the predictor is a signal digitized in many points. Then, people have mainly considered the multivariate linear model and have adapted the least squares procedure to ...
متن کاملThe Assessment of Non-Linear Effects in Clinical Research
Background: Novel models for the assessment of non-linear data are being developed for the benefit of making better predictions from the data. Objective: To review traditional and modern models. Results, and Conclusions: 1) Logit and probit transformations are often successfully used to mimic a linear model. Logistic regression, Cox regression, Poisson regression, and Markow modeling are exampl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2012